• Задать вопрос менеджеру

Twitter новости

Обучение письменному иноязычному общению на основе ИКТ http://t.co/IK2NAjncrk

Online-опрос

Антиплагиат онлайнДипломант
Яндекс.Метрика

Нуклеиновые кислоты. Гликолиз

Предмет:Химия
Тип:Курсовая
Объем, листов:27
Word
Получить полную версию работы
Релевантные слова:рНк, кислоты, сейчас, молекулы, основном, генов, первую, последовательность, которые, получил, Нобелевскую, премию, медицине, обнаружено, Нуклеиновые
Процент оригинальности:
40 %
Цена:250 руб.
Содержание:

Глава 1.

1. 1. Нуклеиновые кислоты. Нуклеотиды. Введение………………………………………………………………. стр2-4

1. 2Структура и свойства РНК. …………………………………………………………………………………………………стр5-7

1. 3. Типы РНК……………………………………………………………………………………………………………………………стр8-13

Глава 2.

1. 4. Гликолиз. Локализация и путь……………………………………………………………………………………………стр14-21

1. 5. Регуляция гликолиза. Значение………………………………………………………………………………………. . . стр22-25

Список использованной литературы………………………………………………………………………………………. стр26-26

Вступление:

Нуклеиновые кислоты были открыты в 1868 году швейцарским учёным Иоганном Фридрихом Мишером, который назвал эти вещества «нуклеин», поскольку они были обнаружены в ядре (лат. nucleus). Позже было обнаружено, что бактериальные клетки, в которых нет ядра, тоже содержат нуклеиновые кислоты. Значение РНК в синтезе белков было предположено в 1939 году в работе Торбьёрна Оскара Касперссона, Жана Брачета и Джека Шульца. Джерард Маирбакс выделил первую матричную РНК, кодирующую гемоглобин кролика и показал, что при её введении в ооциты образуется тот же самый белок. В Советском Союзе в 1956-57 годах проводились работы (А. Белозёрский, А. Спирин, Э. Волкин, Ф. Астрахан) по определению состава РНК клеток, которые привели к выводу, что основную массу РНК в клетке составляет рибосомальная РНК. Северо Очоа получил Нобелевскую премию по медицине в 1959 году за открытие механизма синтеза РНК. Последовательность 77 нуклеотидов одной из тРНК дрожжей S. cerevisiae была определена в 1965 году в лаборатории Роберта Холея, за что в 1968 году он получил Нобелевскую премию по медицине. В 1967 Карл Вёзе предположил, что РНК обладают каталитическими свойствами. Он выдвинул так называемую Гипотезу РНК-мира, в котором РНК прото-организмов служила и в качестве молекулы хранения информации (сейчас эта роль выполняется в основном ДНК) и молекулы, которая катализировала метаболические реакции (сейчас это делают в основном ферменты). В 1976 Уолтер Фаэрс и его группа в Гентском Университете (Голландия) определили первую последовательность генома РНК-содержащего вируса, бактериофага MS2. В начале 1990-х было обнаружено, что введение чужеродных генов в геном растений приводит к подавлению выражения аналогичных генов растения. Приблизительно в это же время было показано, что РНК длиной около 22 оснований, которые сейчас называются микроРНК.

Нуклеи?новые кисло?ты (от лат. nucleus — ядро) — высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.

Нуклеиновые кислоты хорошо растворимы в воде, практически не растворимы в органических растворителях. Очень чувствительны к действию температуры и критических значений уровня pH. Молекулы ДНК с высокой молекулярной массой, выделенные из природных источников, способны фрагментироваться под действием механических сил, например при перемешивании раствора. Нуклеиновые кислоты фрагментируются ферментами — нуклеазами.

Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).

Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.

Рибонуклеи?новые кисло?ты (РНК) — нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания — аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК (мРНК) подвергаются сплайсингу и принимают участие в процессе, называемом трансляцией. Трансляция — это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Нуклеотиды РНК состоят из сахара — рибозы, к которой в положении 1' присоединено одно из оснований аденин, гуанин, цитозин или урацил. Фосфатная группа соединяет рибозы в цепочку, образуя связи с 3' атомом углерода одной рибозы и в 5' положении другой. Фосфатные группы при физиологическом рН отрицательно заряжены, поэтому РНК — полианион. РНК транскрибируется как полимер четырёх оснований (аденина (A), гуанина (G), урацила (U) и цитозина (C), но в «зрелой» РНК есть много модифицированных оснований и сахаров. Всего в РНК насчитывается около 100 разных видов модифицированных нуклеозидов, из которых 2'-О метилрибоза наиболее частая модификация сахара, а псевдоуридин — наиболее часто встречающееся модифицированное основание. У псевдоуридина связь между урацилом и рибозой не C — N, а C — C, этот нуклеотид встречается в разных положениях в молекулах РНК. В частности, псевдоуридин важен для функционирования тРНК. Другое заслуживающее внимания модифицированное основание — гипоксантин, деаминированный гуанин, нуклеозид которого носит название инозина. Инозин играет важную роль в обеспечении вырожденности генетического кода. Роль многих других модификаций не до конца изучена, но в рибосомальной РНК многие пост-транскрипционные модификации находятся в важных для функционирования рибосомы участках. Например, на одном из рибонуклеотидов, участвующим в образовании пептидной связи. Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара. В природе наиболее распространены нуклеотиды, являющиеся ?-N-гликозидами пуринов или пиримидинов и пентоз — D-рибозы или D-2-рибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров (полинуклеотидов) — соответственно РНК или ДНК. Большинство нуклеотидов являются моноэфирами ортофосфорной кислоты, однако известны и диэфиры нуклеотидов, в которых этерифицированы два гидроксильных остатка — например, циклические нуклеотиды циклоаденин- и циклогуанин монофосфаты (цАМФ и цГМФ). Наряду с нуклеотидами — эфирами ортофосфорной кислоты (монофосфатами) в природе также распространены и моно- и диэфиры пирофосфорной кислоты (дифосфаты, например, аденозиндифосфат) и моноэфиры триполифосфорной кислоты (трифосфаты, например, аденозинтрифосфат). Соединения, состоящие из двух нуклеотидовых молекул, называются динуклеотидами, из трёх — тринуклеотидами, из небольшого числа — олигонуклеотидами, а из многих — полинуклеотидами, или нуклеиновыми кислотами. Названия нуклеотидов представляют собой аббревиатуры в виде стандартных трёх- или четырёхбуквенных кодов. Если аббревиатура начинается со строчной буквы «д» (англ. d), значит подразумевается дезоксирибонуклеотид; отсутствие буквы «д» означает рибонуклеотид. Если аббревиатура начинается со строчной буквы «ц» (англ. c), значит речь идёт о циклической форме нуклеотида (например, цАМФ). Первая прописная буква аббревиатуры указывает на конкретное азотистое основание или группу возможных нуклеиновых оснований, вторая буква — на количество остатков фосфорной кислоты в структуре (М — моно-, Д — ди-, Т — три-), а третья прописная буква — всегда буква Ф («-фосфат»; англ. P). Латинские и русские коды для нуклеиновых оснований:

A — А: Аденин;

G — Г: Гуанин;

C — Ц: Цитозин;

T — Т: Тимин (5-метилурацил), не встречается в РНК, занимает место урацила в ДНК;

U — У: Урацил, не встречается в ДНК, занимает место тимина в РНК.

Заключение:

Гликолиз — катаболический путь исключительной важности. Он обеспечивает энергией клеточные реакции, в том числе и синтез белка. Промежуточные продукты гликолиза используются при синтезе жиров. Пируват также может быть использован для синтеза аланина, аспартата и других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

Список литературы:

1). Бартон Д. , Оллис У. Д. Общая органическая химия — Москва: Химия, 1986. — Т. 10. — С. 32—215. — 704 с.

2). Франк-Каменецкий М. Д. Самая главная молекула — Москва: Наука, 1983. — 160 с.

3). Т. Ш. Шарманов, С. М. Плешкова «Метаболические основы питания с курсом общей биохимии», Алматы, 1998 г.

4). С. Тапбергенов «Медицинская биохимия», Астана, 2001 г.

5). С. Сеитов «Биохимия», Алматы, 2001 г.

6). В. Дж. Маршал «Клиническая биохимия», 2000 г.

7). Б. Гринстейн, А. Гринстейн «Наглядная биохимия», 2000 г.

8). Т. Т. Березов, Б. Ф. Коровкин «Биологическая химия», 1998 г.

9). Д. Г. Кнорре, С. Д. Мызина «Биологическая химия», Москва, 1998 г.

10). Р. Марри, Д. Греннер «Биохимия человека», I-II том, 1993 г.

11). А. Ш. Зайчик, Л. Г. Чурилов «Основы патохимии», Москва, 2001 г.

12). Полосухина Т. Я. , Аблаев Н. Р. «Материалы к курсу биологической химии», 1977 – 18-22.

13). С. М. Плешкова, С. А. Абитаева, Р. Д Асанбаева «Белки. Биосинтез белков. Ос- новы молекулярной генетики»,Алма-Ата,1992